

ENVIRONMENTAL MONITORING

REPORT 2022

BIDGEE BANKS GOLF COURSE

JOB NO: 8554

2021 / 2022

DM McMahon Pty Ltd 6 Jones Street (PO Box 6118) Wagga Wagga NSW 2650

t (02) 6931 0510 www.dmmcmahon.com.au

Report type

Environmental Monitoring Report

Site address

Bidgee Banks Golf Course Landon Street Gundagai NSW 2720

Report number

8554

Prepared for

Ganesh Ganeshamoorthy
Cootamundra-Gundagai Regional Council
255 Sheridan Street
PO Box 34
Gundagai NSW 2720
ganesh.ganeshamoorthy@cgrc.nsw.gov.au

Prepared by

DM McMahon Pty Ltd 6 Jones Street (PO Box 6118) Wagga Wagga NSW 2650

Tel: 0269 310 510

Email: admin@dmmcmahon.com.au

Document Control

Prepared by	Signed	Date	Revision
David McMahon CEnvP SC	1441	13/05/22	00
BAppSc SA			
GradDip WRM			
MEnvMgmt			
MALGA MEIANZ MSSA			

May 2022 Page 2 of 16

Contents
1.0 Introduction
2.0 Seasonal Conditions
3.0 Results
4.0 Nutrient Loading
5.0 Conclusion
6.0 References
7.0 Disclaimer
8.0 Notice of Copyright
9.0 Attachments
List of Tables
Table 1: Gundagai weather data May 2021 to April 20225
Table 2: Gundagai long term average weather data5
Table 3: Soil analysis parameters 6
Table 4: Topsoil analysis7
Table 5: Subsoil analysis8
Table 6: Effluent analysis 2021/2210
Table 7: Classification of effluent
Table 8: Groundwater analysis 2021/2211
Table 9: Nutrient mass balance
Table 10: Phosphorus calculations
Table 11: Nitrogen calculations
Table 12: Crop nutrient uptake and actual nutrient application 2021/2213
Table 13: Recommended effluent application rates (ML/ha)
List of Figures
Figure 1: Historical topsoil phosphorus levels
Figure 2: Historical topsoil ESP levels

Attachments

Laboratory reports

1.0 Introduction

Environmental monitoring is carried out at the Bidgee Banks Golf Course for Cootamundra-Gundagai Regional Council (CGRC) to monitor the effects of irrigating soils with treated effluent from the Gundagai Sewage Treatment Works. The treated effluent is stored in a primary pond for 25 days before being released into a lagoon for storage prior to irrigation. The golf course is approximately 20 hectares in area and approximately 20 Megalitres (ML) of effluent was irrigated in the 2021/22 irrigation season. Irrigation occurs on a demand basis usually from late spring throughout summer and into early autumn.

The scope of works is to conduct the monitoring to satisfy CGRC's Environment Protection Licence No. 1721 that was varied in July 2021 (Notice No. 1609932). Specific to the licence conditions and as requested by CGRC, the agreed scope of works conducted by McMahon are as follows:

- Fortnightly monitoring of the treated effluent in the storage dam that is used to irrigate the golf course.
- Annual groundwater sampling at two monitoring points.
- Annual soil monitoring at three locations to assess any temporal changes in nutrients that may occur due to the irrigation of treated effluent. At each location samples are collected at four increments (0-10cm, 10-30cm, 30-60cm and 60-100cm) to satisfy the DEC 2004 (Formerly NSW EPA) environmental guidelines Use of Effluent by Irrigation.
- Calculate the nutrient load applied to the soil in the treated effluent to assess the assimilation of nutrients.
- Compilation of an annual environmental monitoring report with a comparison of results compared to long term monitoring data which commenced in 1999.

May 2022 Page 4 of 16

2.0 Seasonal Conditions

Rainfall for the irrigation season (October 2021 to April 2022) was variable but overall above average, while temperatures were near normal, **Tables 1** and **2**. Weather data was sourced from BOM Station 073141, Nangus Road Gundagai. Long term data was sourced from BOM Station 073128 Ridge Street Gundagai. The long-term average was collected between 1976 to 1995.

Table 1: Gundagai weather data May 2021 to April 2022

Month	Average Minimum Temperature (°) 2021/2022	Average Maximum Temperature (°) 2021/2022	Total Rainfall (mm) 2021/2022
May 2021	5.4	18.7	53.7
June 2021	4.0	14.5	120.5
July 2021	3.9	12.9	102.4
August 2021	3.4	16.2	44.4
September 2021	5.1	18.5	101.0
October 2021	7.6	21.8	50.1
November 2021	11.2	23.0	130.4
December 2021	14.1	30.9	19.4
January 2022	17.8	30.9	134.8
February 2022	14.7	30.0	43.8
March 2022	15.0	28.6	24.8
April 2022	10.5	23.2	80.0

Table 2: Gundagai long term average weather data

Month	Average Minimum Temperature (°) Long Term	Average Maximum Temperature (°) Long Term	Average Rainfall (mm) Long Term
May	6.0	18.0	67.7
June	3.2	13.6	60.3
July	2.0	12.8	78.6
August	3.1	14.9	63.2
September	5.1	17.6	68.4
October	7.5	21.7	69.2
November	10.3	25.8	49.5
December	13.1	29.2	52.3
January	15.0	31.6	65.8
February	15.6	31.4	41.1
March	12.9	27.8	43.6
April	8.7	22.8	54.9

May 2022 Page 5 of 16

3.0 Results

Soil

Fairways 8 and 5 were chosen as soil sampling sites in order to obtain a cross-section of the soils at the Bidgee Banks Golf Course. Fairway 8 is on the northern side of the course and on slightly higher ground than Fairway 5, which is adjacent to the Murrumbidgee River. A site where no irrigation occurs, on the south-eastern end of Fairway 6, was chosen as a soil testing control for comparison of readily monitored changes in the irrigated sites. Soils are typically well drained alluvial grey-brown silty loams to clay loams. A GPS (Global Positioning System) is used to log soil sample locations for monitoring and site management.

All the soils sampled are well-drained river loams. The soils demonstrate structure and an abundance of organic material (i.e. roots) down to the sampled depth. The soils appeared to be in good physical condition with the absence of any pans or water logging.

At each of the three soil monitoring locations the following analysis is conducted, **Table 3**.

Table 3: Soil analysis parameters

Depth	Analysis
0-10cm	Total Phosphorus, Total Kjeldahl Nitrogen, Nitrate, Phosphorus (Colwell), Phosphorus Buffer Index, Conductivity, Chloride, pH, Sulphur, Cation Exchange Capacity
10-30cm	Conductivity, Nitrate as N, Total Phosphorus, pH
30-60cm	Conductivity, Nitrate as N, Total Phosphorus, pH
60-100cm	Conductivity, Nitrate as N, Total Phosphorus, pH

The results of the topsoil analysis show a soil with a relatively stable pH and low electrical conductivity with low exchangeable sodium percentage (ESP). Macronutrients are generally lower in the non-irrigated sample point, but all sample points display similar seasonal variations.

The subsoil analysis has remained relatively stable compared to historical data with some minor temporal variation.

The results of the sampling can be seen in the following **Tables 4** and **5** and the historical phosphorous and ESP data trends can be seen in **Figures 1** and **2**.

May 2022 Page 6 of 16

Table 4: Topsoil analysis

Parameter	Desirable Range	Fairway 5	Fairway 8	Non-Irrigated
Phosphorus Total (mg/kg)	>303	450	551	455
Total Kjeldahl Nitrogen (mg/kg)	>2001	4730	2360	3180
Nitrate Nitrogen (ppm)	>303	24	2.8	8.4
Phosphorus Colwell (ppm)	>303	110	47	28
P Buffer Index (PBI)	> 304	41	40	37
Available K (ppm)	> 225 ⁵	550	310	350
Available Sulphur KCI (ppm)	>10 ¹	14	9	6
EC (dS/m)	<0.51	0.16	0.08	0.07
ECe (dS/m)	<21	1.3	0.5	0.6
Organic C (% C)	21	5.2	2.6	2.9
Chloride (ppm)	< 125 ⁴	53	28	<10
pH (H ₂ O)	6 - 8 ¹	6.1	6.5	6.3
pH (CaCl2)	5.5 - 7 ¹	5.6	5.8	5.5
CEC (meq/100gm)	5 - 15¹	15.6	15.0	11.9
Aluminium (meq/100gm)	<12	<0.1	<0.1	<0.1
Calcium (meq/100gm)	n/a	10	9.7	8.6
Magnesium (meq/100gm)	n/a	4	4.4	2.4
Sodium (meq/100gm)	<4.32	0.14	0.1	0.03
Potassium (meq/100gm)	no data	1.4	0.79	0.89
Ca:Mg Ratio	>21	2.5	2.2	3.6
K:Mg Ratio	no data	0.4	0.2	0.4
Aluminium %	<5% ¹	<1.0	<1.0	<1.0
Calcium %	65-80% ¹	65	65	72
Magnesium %	10-15% ¹	26	30	20
Sodium %	<5% ¹	0.19	0.67	0.28
Potassium %	1-5% ¹	9	5.3	7.5

^{1.}NSW Agriculture (1998),

May 2022 Page 7 of 16

^{2.} Charman & Murphy (1991),

^{3.} Gunter (1997),

^{4.} Peverill, Sparrow & Reuter (1999),

^{5.} Incitec Fertilisers et al. Technical Bulletin

Table 5: Subsoil analysis

Depth	Parameter	Desirable Range	Fairway 5	Fairway 8	Non- Irrigated
	Conductivity (µS/cm)	<500	110	150	100
10-30cm	Nitrate as N (mg/kg)	>303	8	<1	3
	Phosphorus Total (mg/kg)	>303	351	405	301
	pH (H ₂ O)	6 - 8 ¹	6.2	5.5	6.5
30-60cm	Conductivity (µS/cm)	<500 ¹	115	150	95
	Nitrate as N (mg/kg)	>303	4	<1	1
	Phosphorus Total (mg/kg)	>30 ³	407	507	357
	pH (H ₂ O)	6 - 8 ¹	6.2	5.0	6.5
	Conductivity (µS/cm)	<500 ¹	119	88	92
60-100cm	Nitrate as N (mg/kg)	>303	1	<1	1
	Phosphorus Total (mg/kg)	>303	453	553	358
	pH (H ₂ O)	6 - 8 ¹	6.0	5.5	6.5

^{1.} NSW Agriculture (1998)

May 2022 Page 8 of 16

^{2.} Charman & Murphy (1991)

^{3.} Gunter (1997)

^{4.} Peverill, Sparrow & Reuter (1999)

^{5.} Incitec Fertilisers et al. Technical Bulletin

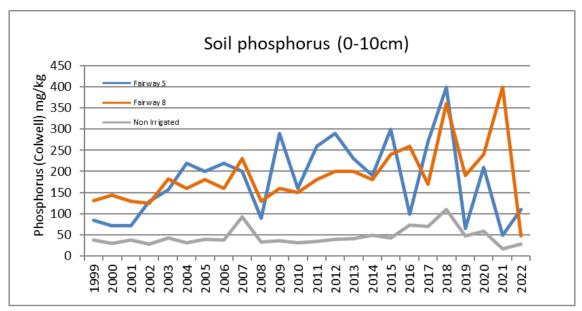


Figure 1: Historical topsoil phosphorus levels

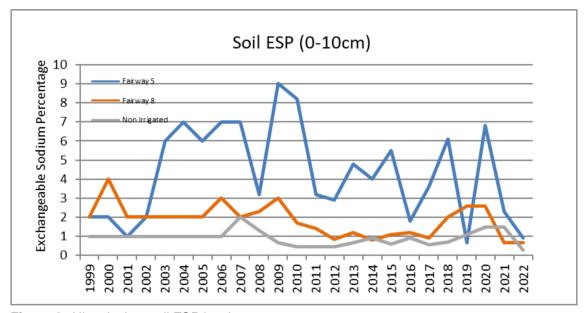


Figure 2: Historical topsoil ESP levels

May 2022 Page 9 of 16

Treated Effluent

25 water samples from May 2021 to April 2022 were collected from the treated effluent in the storage dam that is used to irrigate the golf course. Water samples are analysed for BOD, Faecal Coliforms, Conductivity, Total Nitrogen, Oil & Grease, Total Phosphorus, pH, Sodium Adsorption Ratio and Total Suspended Solids.

The results of the monitoring show generally stable parameters except for faecal coliforms that show some variation, **Table 6**. The variable faecal coliform readings could be attributable to the replacement works that is being conducted at the Gundagai Sewage Treatment Works during the monitoring period, but this was not confirmed as it is outside of the scope of works.

The treated effluent at average concentrations is classed as low strength effluent for irrigation in relation to the DEC guidelines, **Table 7**.

Table 6: Effluent analysis 2021/22

Pollutant	Desirable Level	Minimum	Average	Maximum
BOD mg/L	<40 ²	2	9	17
Conductivity µS/cm	280 - 800	552	610	874
Faecal Coliforms cfu/100ml	< 1000	4	817	5000
Oil & Grease mg/L	<5	1	3	7
рН	6.5-8.0	7.2	7.9	9.2
Phosphorus (total) mg/L	<10	1.71	3.36	4.78
Sodium Adsorption Ratio	<6	1	2	3
Nitrogen (total) mg/L	<50	2	12	26
Total Suspended Solids mg/L	N/A	2	21	40

^{1.} AWG (2018)

Table 7: Classification of effluent

0	Strength			
Constituent	Effluent range 2021/2022	Low	Medium	High
Total Nitrogen	2 - 26	<50	50-100	>100
Total Phosphorus	1.71 - 4.78	<10	10-20	>20
Total Suspended Solids	2 - 40	<600	600-1,000	>1,000-2,500

May 2022 Page 10 of 16

^{2.} DEC NSW (2004)

^{3.} EPA NSW (1995)

Groundwater

One groundwater sample was collected on the 19 April 2022 from the two monitoring bores that are located in the vicinity of fairways 17 and 7 respectively.

Monitoring bore number one, located on Fairway 17, had a Standing Water Level (SWL) of - 3.85 metres below ground level while monitoring bore number two 2 could not be located and is assumed to have been destroyed.

The groundwater sample was analysed for BOD, Conductivity, Total Nitrogen, Oil & Grease, Total Phosphorus, pH, Sodium Adsorption Ratio and TSS, **Table 8**. The results are consistent with long term trends.

 Table 8: Groundwater analysis 2021/22

Pollutant	Desirable Level	Bore 1	Bore 2
BOD mg/L	<402	2	No sample
Conductivity µS/cm	280 - 800 ¹	655	No sample
Oil & Grease mg/L	<5 ³	2	No sample
рН	6.5-8.0 ¹	6.8	No sample
Phosphorus (total) mg/L	<10 2	12.5	No sample
Sodium Adsorption Ratio	<6 ³	2	No sample
Nitrogen (total) mg/L	<50 ²	4	No sample
Total Suspended Solids mg/L	n/a	2950	No sample
Comments			
Water Quality	n/a	Poor	No sample
Particulate Matter	n/a	Yes - sediment	No sample

^{1.} ANZG 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia.

May 2022 Page 11 of 16

^{2.} DEC NSW (2004) Use of Effluent by Irrigation, Environmental Guidelines

4.0 Nutrient Loading

In the 2021/22 irrigation season approximately 20,000 kilolitres (20 ML) of effluent was irrigated over an area of approximately 20 hectares. Maximum nutrient loading rates are calculated annually to compare nutrient concentrations in irrigated effluent with the anticipated crop uptake of nutrients. **Table 9** shows the nutrient mass balance incorporating average effluent quality and quantities applied. The nutrient mass balance indicates that for perennial grasses the nitrogen and phosphorus supply in the effluent irrigation is below the anticipated plant uptake. Processes such as mineralization, fixation from legumes and fertilising will boost nitrogen supply to more desirable levels for healthy plants.

Table 9: Nutrient mass balance

Parameter	Effluent Quality (Mean value)	Nutrient Loading	Nutrient Removal	Nutrient Balance
	mg/L	kg/ha/yr	kg/ha/yr	kg/ha/yr
Nitrogen	12	12	130	-118
Phosphorus	3.36	3.36	16	-12.6

Calculating the maximum nutrient loading rates

The following equation is used to determine the recommended effluent flow rate in kilolitres per day over the 20 hectares.

$$Q = \frac{A * 1000 * L_C}{C}$$

Where:

A = the irrigation area (hectares)

C = concentration of constituents (milligrams per litre)

Q = average effluent flow rate (kilolitres per day)

 L_c = critical loading rate of constituent (kilograms per hectare per day)

The amount of effluent that can be applied to perennial grasses has been calculated for minimum, average and maximum nutrient levels in the irrigated effluent. The amounts of effluent (Q) that can be applied for the different nutrient levels can be seen in **Tables 10** and **11**. The values have been calculated in kilolitres per hectare per year.

Table 10: Phosphorus calculations

Phosphorus Concentration Ranges	Min	Average	Max
C - concentration phosphorus in effluent mg/L	1.71	3.36	4.78
L _c - critical loading rate of phosphorus kg/ha/year	16	16	16
A - The irrigation area (hectares)	20	20	20
Q - Average effluent flow rate kL/ha/year	3347	4762	9357
Actual amount of effluent irrigated kL/ha/year	1000	1000	1000
Actual Phosphorus applied in effluent (load) kg/ha	1.71	3.36	4.78

May 2022 Page 12 of 16

^k – Irrigation loads were calculated based on 1000KL a day over the 20 ha.

Table 11: Nitrogen calculations

Nitrogen Concentration Ranges	Min	Average	Max
C - concentration of nitrogen in effluent mg/L	2	12	26
L _c - critical loading rate of nitrogen kg/ha/year	130	130	130
A - The irrigation area (hectares)	20	20	20
Q - Average effluent flow rate kL/ha/year	5000	10833	65000
Actual amount of effluent irrigated kL/ha/year	1000	1000	1000
Actual Nitrogen applied in effluent (load) kg/ha	2	12	26

The critical loading rate of constituent (L_c) has been calculated from annual nutrient uptake ranges for perennial pasture as per DEC guidelines (2004). **Table 12** outlines the nutrient uptake ranges in comparison to the actual amount of nutrient applied in the irrigated effluent (at the mean nutrient concentration).

Table 12: Crop nutrient uptake and actual nutrient application 2021/22

Сгор	Annual Phosphorus uptake range (kg/ha) <i>NSW</i> <i>EPA</i> 1995	Phosphorus applied in effluent at mean concentration (kg/ha)	Annual Nitrogen uptake range (kg/ha) NSW EPA 1995	Nitrogen applied in effluent at mean concentration (kg/ha)
Perennial Pasture	8 - 16	3.36	65 - 130	12

Table 13 shows the recommended irrigation rate for sustainable assimilation of nutrients for perennial grasses based on the minimum, average and maximum nutrient loading compared to the actual irrigation rate in 2021/22. The data show that sustainable irrigation of the treated effluent with occurring with actual application rates below the calculated plant uptake.

Table 13: Recommended effluent application rates (ML/ha)

	on Actual application	Perennial Pasture		
Effluent application		Phosphorus	Nitrogen	
Minimum	1.0	9.4	65.0	
Average	1.0	4.8	10.8	
Maximum	1.0	3.3	5.0	

May 2022 Page 13 of 16

5.0 Conclusion

From the mass balance calculations, the amount of nitrogen and phosphorus applied in the effluent is theoretically lower than what the plants can effectively utilise. This shows that at average rates, plants should theoretically be able to assimilate the applied nutrients. The amount of effluent applied is below the recommended application rate range for phosphorus and nitrogen.

May 2022 Page 14 of 16

6.0 References

ANZECC 2000, Australian and New Zealand Guidelines for Fresh and Marine Water Quality, National Water Quality Management Strategy, Australia & New Zealand Environment & Conservation Council, Sydney.

Bureau of Meteorology 2021, Climate Data Online, http://www.bom.gov.au/climate/data/.

Charman, PEV & Murphy, BW 1991, Soils Their Properties and Management, Oxford University Press, Australia

DEC 2004, Environmental guidelines, Use of Effluent by Irrigation, Department of Environment and Conservation (NSW), Sydney

DIPNR 2003, *Minimum Construction Requirements for Water Bores in Australia*, 2nd edn, Department of Infrastructure, Planning & Natural Resources, Sydney.

Glendinning JS (1999), Australian Soil Fertility Manual, CSIRO Publishing, Collingwood, Victoria

NRMMC/EPHC 2005, National Guidelines for Water Recycling - Managing Health and Environmental Risks, Environmental Protection and Heritage Council and Natural Resource Management Ministerial Council

NHMRC/ARMCA&NZ 1996, *Australian Drinking Water Guidelines*, publ. National Health & Medical Research Council and the Agriculture & Resource Management Council of Australia and New Zealand

NSW EPA 1997, Environmental Guidelines: Use & Disposal of Biosolids Products, NSW Environment Protection Authority, Sydney, NSW

Reuter DJ & Robinson JB 1997, *Plant Analysis an Interpretation Manual*, CSIRO Publishing, Collingwood, Victoria

Singer, MJ & Munns, DN 1996, Soils an Introduction, 3rd edition, Prentice Hall, New Jersey, USA

7.0 Disclaimer

The information contained in this report has been extracted from field and laboratory sources believed to be reliable and accurate. DM McMahon Pty Ltd assume any responsibility for the misinterpretation of information supplied in this report. The accuracy and reliability of recommendations identified in this report need to be evaluated with due care according to individual circumstances. It should be noted that the recommendations and findings in this report are based solely upon the said site location and the ground level conditions at the time of testing. The results of the said investigations undertaken are an overall representation of the conditions encountered. The properties of the soil within the location may change due to variations in ground conditions outside of the tested area. The author has no control or liability over site variability that may warrant further investigation that may lead to significant design changes.

May 2022 Page 15 of 16

8.0 Notice of Copyright

The information contained in this report must not be copied, reproduced or used for any purpose other than a purpose approved by DM McMahon Pty Ltd, except as permitted under the Copyright Act 1968. Information cannot be stored or recorded electronically in any form without such permission. © DM McMahon Pty Ltd.

9.0 Attachments

Laboratory report – 7 pages

May 2022 Page 16 of 16

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

Thursday, May 5, 2022

DM McMahon Pty Ltd
PO Box 6118 6 Jones Street
Wagga Wagga NSW 2650
Attention: David McMahon

NATA Accredited Laboratory Number: 9597

Accredited for compliance with ISO/IEC 17025 - Testing

LABORATORY ANALYSIS REPORT

Report Number:2204-0053 Page 1 of 2

For all enquiries related to this report please quote document number: 2204-0053

Facility:Order #Date Analysis Commenced22-April-2022

Sample TypeCollected ByDate ReceivedWaterZ. Delaney22-April-2022

water			Z. Defancy		22 1	ipi11-2022
EAL ID	Client ID. Test Date/Time sample taken		Resu	lt (units)	Method Reference	Limit of Reporting
22Apr-0156	Point 1 (Irrig	gation)				
		Biochemical Oxygen Demand	8	3 mg/L	APHA 5210 B/4500-O G	2
		Calcium (dissolved)	20.0	mg/L	APHA 3030 B/3120 B	2
		Faecal coliforms	360	cfu/100mL	* AS/NZS 4276.7:2007	
		Conductivity	590	μS/cm	APHA 2510 B	1
		Magnesium (dissolved)	10.3	mg/L	APHA 3030 B/3120 B	2
		Nitrogen, total	17	mg/L	* APHA 4500-Norg B + 4110 B	2
		Nitrate/Nitrite as N	9.1	mg/L	LTM-W-014	0.1
		Oil & Grease	<1	mg/L	APHA 5520 D	1
		Phosphorus, Total	2.99	mg/L	LTM-W-030	0.01
		pН	6.8	B pH units	APHA 4500-H+ B	
		Sodium Adsorption Ratio	3	8 Ratio	LTM-W-039	
		Sodium (dissolved)	61.8	B mg/L	APHA 3030 B/3120 B	2
		Total Kjeldahl Nitrogen	8	B mg/L	LTM-W-034	. 2
		Total Suspended Solids	20	mg/L	APHA 2540 D	2
22Apr-0157	Piezo 1 19.04.22 11.06					
		Biochemical Oxygen Demand	2	2 mg/L	APHA 5210 B/4500-O G	2
		Calcium (dissolved)	25.5	mg/L	APHA 3030 B/3120 B	2
		Conductivity	655	5 μS/cm	APHA 2510 B	1
		Magnesium (dissolved)	33.3	3 mg/L	APHA 3030 B/3120 B	2
		Nitrogen, total	4	l mg/L	* APHA 4500-Norg B + 4110 B	2
		Nitrate/Nitrite as N	0.1	mg/L	LTM-W-014	0.1

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

Thursday, May 5, 2022

DM McMahon Pty Ltd PO Box 6118 6 Jones Street Wagga Wagga NSW 2650

Attention: David McMahon

NATA Accredited Laboratory Number: 9597 Accredited for compliance with

ISO/IEC 17025 - Testing

LABORATORY ANALYSIS REPORT

Report Number:2204-0053 Page 2 of 2

For all enquiries related to this report please quote document number: 2204-0053

Facility:Order #Date Analysis Commenced22-April-2022

Sample TypeCollected ByDate ReceivedWaterZ. Delaney22-April-2022

EAL ID	Client ID. Date/Time sample	<u>Test</u> taken	Result	Result (units)		Limit of Reporting
22Apr-0157	Piezo 1 19.04.22 11.06					
		Oil & Grease	2	mg/L	APHA 5520 D	1
		Phosphorus, Total	12.5	mg/L	LTM-W-030	0.01
		pH	6.8	pH units	APHA 4500-H+ B	
		Sodium Adsorption Ratio	2	Ratio	LTM-W-039	
		Sodium (dissolved)	80.7	mg/L	APHA 3030 B/3120 B	2
		Total Kjeldahl Nitrogen	4	mg/L	LTM-W-034	2
		Total Suspended Solids	2950	mg/L	APHA 2540 D	2

Note:

* NATA Accreditation does not cover the performance of this service.

Signed

Michael Glazier, Laboratory Manager.

All samples analysed as received.
All soil results are reported on a dry basis.
The EAL takes no responsibility for the end use of results within this report.
This report shall not be reproduced except in full.
This report replaces any previously issued report

www.csu.edu.au

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

Thursday, May 5, 2022

DM McMahon Pty Ltd PO Box 6118 6 Jones Street Wagga Wagga NSW 2650 Attention: David McMahon

NATA Accredited Laboratory Number: 9597 Accredited for compliance with ISO/IEC 17025 - Testing

LABORATORY ANALYSIS REPORT

Report Number: 2204-0067 Page 1 of 4

For all enquiries related to this report please quote document number: 2204-0067

Facility: Order # **Date Analysis Commenced** 24-April-2022

Sample Type Collected By Date Received 24-April-2022 Z. Delanev

Soil			Z. Delaney				pril-2022
EAL ID	Client ID. Date/Time sample taken	<u>Test</u>		Result	(units)	Method Reference	Limit of Reporting
22Apr-0189	Fairway 5 0-10 22.04.22 10.15am						
		ohorus, Total		450	mg/kg	LTM-S-015	2
	Total	Kjeldahl Nitrogen		4730	mg/kg	LTM-S-011	2
22Apr-0190	Fairway 8 0-10 22.04.22 9.50am						
	Phosp	ohorus, Total		551	mg/kg	LTM-S-015	2
	Total	Kjeldahl Nitrogen		2360	mg/kg	LTM-S-011	2
22Apr-0191	Control 0-10 22.04.22 10.40am						
	Phosp	ohorus, Total		455	mg/kg	LTM-S-015	2
	Total	Kjeldahl Nitrogen		3180	mg/kg	LTM-S-011	2
22Apr-0192	Fairway 5 10-30 22.04.22 10.18am						
	Cond	uctivity (1:5 soil/water)		110	μS/cm	LTM-S-003	1
	Nitra	te as N		8	mg/kg	LTM-S-007	1
	Phosp	ohorus, Total		351	mg/kg	LTM-S-015	2
	pH (1	:5 soil/water)		6.2	pH units	LTM-S-004	
22Apr-0193	Fairway 5 30-60 22.04.22 10.26am						
	Cond	uctivity (1:5 soil/water)		115	μS/cm	LTM-S-003	1
	Nitra	te as N		4	mg/kg	LTM-S-007	1
	Phosp	ohorus, Total		407	mg/kg	LTM-S-015	2
	pH (1	:5 soil/water)		6.2	pH units	LTM-S-004	
22Apr-0194	Fairway 5 60-100 22.04.22 10.30am						
	Cond	uctivity (1:5 soil/water)		119	μS/cm	LTM-S-003	1

www.csu.edu.au

CRICOS Provider Numbers for Charles Sturt University are 00005F (NSW), 01947G (VIC) and 02960B (ACT). ABN: 83 878 708 551

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

Thursday, May 5, 2022

DM McMahon Pty Ltd
PO Box 6118 6 Jones Street
Wagga Wagga NSW 2650
Attention: David McMahon

NATA Accredited Laboratory Number: 9597 Accredited for compliance with ISO/IEC 17025 - Testing

LABORATORY ANALYSIS REPORT

Report Number:2204-0067 Page 2 of 4

For all enquiries related to this report please quote document number: 2204-0067

Facility:Order #Date Analysis Commenced24-April-2022

Sample TypeCollected ByDate ReceivedSoilZ. Delaney24-April-2022

EAL ID	Client ID. Test Date/Time sample taken	Result	(units)	Method Reference	Limit of Reporting
22Apr-0194	Fairway 5 60-100 22.04.22 10.30am				
	Nitrate as N	1	mg/kg	LTM-S-007	1
	Phosphorus, Total	453	mg/kg	LTM-S-015	2
	pH (1:5 soil/water)	6.0	pH units	LTM-S-004	
22Apr-0195	Fairway 8 10-30 22.04.22 9.53am				
	Conductivity (1:5 soil/water)	150	μS/cm	LTM-S-003	1
	Nitrate as N	<1	mg/kg	LTM-S-007	1
	Phosphorus, Total	405	mg/kg	LTM-S-015	2
	pH (1:5 soil/water)	5.5	pH units	LTM-S-004	
22Apr-0196	Fairway 8 30-60 22.04.22 10.05am				
	Conductivity (1:5 soil/water)	150	μS/cm	LTM-S-003	1
	Nitrate as N	<1	mg/kg	LTM-S-007	1
	Phosphorus, Total	507	mg/kg	LTM-S-015	2
	pH (1:5 soil/water)	5.0	pH units	LTM-S-004	
22Apr-0197	Fairway 8 60-100 22.04.22 10.05am				
	Conductivity (1:5 soil/water)	88	μS/cm	LTM-S-003	1
	Nitrate as N	<1	mg/kg	LTM-S-007	1
	Phosphorus, Total	553	mg/kg	LTM-S-015	2
	pH (1:5 soil/water)	5.5	pH units	LTM-S-004	
22Apr-0198	Control 10-30 22.04.22 10.43am				
	Conductivity (1:5 soil/water)	100	μS/cm	LTM-S-003	1

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

Thursday, May 5, 2022

DM McMahon Pty Ltd PO Box 6118 6 Jones Street Wagga Wagga NSW 2650

Attention: David McMahon

NATA Accredited Laboratory Number: 9597 Accredited for compliance with

ISO/IEC 17025 - Testing

LABORATORY ANALYSIS REPORT

Report Number:2204-0067 Page 3 of 4

For all enquiries related to this report please quote document number: 2204-0067

Facility:Order #Date Analysis Commenced24-April-2022

Sample TypeCollected ByDate ReceivedSoilZ. Delaney24-April-2022

EAL ID	Client ID. Test Date/Time sample taken	Result	Result (units)		Limit of Reporting	
22Apr-0198	Control 10-30 22.04.22 10.43am					
	Nitrate as N	3	mg/kg	LTM-S-007	1	
	Phosphorus, Total	301	mg/kg	LTM-S-015	2	
	pH (1:5 soil/water)	6.5	pH units	LTM-S-004		
22Apr-0199	Control 30-60 22.04.22 10.48am					
	Conductivity (1:5 soil/water)	95	μS/cm	LTM-S-003	1	
	Nitrate as N	1	mg/kg	LTM-S-007	1	
	Phosphorus, Total	357	mg/kg	LTM-S-015	2	
	pH (1:5 soil/water)	6.5	pH units	LTM-S-004		
22Apr-0200	Control 60-100 22.04.22 10.55am					
	Conductivity (1:5 soil/water)	92	$\mu S/cm$	LTM-S-003	1	
	Nitrate as N	1	mg/kg	LTM-S-007	1	
	Phosphorus, Total	358	mg/kg	LTM-S-015	2	
	pH (1:5 soil/water)	6.5	pH units	LTM-S-004		

Note:

^{*} NATA Accreditation does not cover the performance of this service.

Locked Bag 588 Wagga Wagga NSW 2678

Tel: +61 2 6933 2849 Fax: +61 2 6933 2477 Email: eal@csu.edu.au

http://science-health.csu.edu.au/eal

Thursday, May 5, 2022

DM McMahon Pty Ltd PO Box 6118 6 Jones Street Wagga Wagga NSW 2650

Attention: David McMahon

NATA Accredited Laboratory Number: 9597 Accredited for compliance with

ISO/IEC 17025 - Testing

LABORATORY ANALYSIS REPORT

Report Number:2204-0067 Page 4 of 4

For all enquiries related to this report please quote document number: 2204-0067

Facility:Order #Date Analysis Commenced24-April-2022

Sample TypeCollected ByDate ReceivedSoilZ. Delaney24-April-2022

 EAL ID
 Client ID.
 Test
 Result (units)
 Method Reference
 Limit of Reporting

 Date/Time sample taken
 Reporting

Signed

...... Michael Glazier, Laboratory Manager.

All samples analysed as received.
All soil results are reported on a dry basis.
The EAL takes no responsibility for the end use of results within this report.
This report shall not be reproduced except in full.
This report replaces any previously issued report

Mflir

Sample Name		CONTROL	FAIRWAY 5	FAIRWAY 8
Nitrate Nitrogen	mg/kg	8.4	24	2.8
Phosphorus (Colwell)	mg/kg	28	110	47
Phoophorica Buffor Indox (DBI Col)		37	41	40
Phosphorus Buffer Index (PBI-Col)				_
Available Potassium	mg/kg	350	550	310
Sulphur (KCl40)	mg/kg	6	14	9
Electrical Conductivity (1:5 water)	dS/m	0.07	0.16	0.08
Elec. Cond. (Sat. Ext.)	dS/m	0.6	1.3	0.5
Organic Carbon (W&B)	%	2.9	5.2	2.6
Chloride	mg/kg	<10	53	28
pH (1:5 Water)	mg/kg	6.3	6.1	6.5
pH (1:5 CaCl2)		5.5	5.6	5.8
,	00001/11/1/4	5.5 11.9		
Cation Exch. Cap.	cmol(+)/kg		15.6	15
Aluminium (KCI)	cmol(+)/kg	<0.1	<0.1	<0.1
Calcium (Amm-acet.)	cmol(+)/kg	8.6	10	9.7
Magnesium (Amm-acet.)	cmol(+)/kg	2.4	4	4.4
Sodium (Amm-acet.)	cmol(+)/kg	0.03	0.14	0.1
Potassium (Amm-acet.)	cmol(+)/kg	0.89	1.4	0.79
Calcium/Magnesium Ratio		3.6	2.5	2.2
Aluminium (KCI)	%	<1.0	<1.0	<1.0
Calcium (Amm-acet.)	%	72	65	65
Magnesium (Amm-acet.)	%	20	26	30
Sodium % of Cations (ESP)	%	0.28	0.91	0.67
Potassium (Amm-acet.)	%	7.5	9	5.3

Tested by Nutrient Advantage Laboratory Werribee VIC

022019507 - Control 022019508 - Fairway 5

022019509 - Fairway 8